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The motion of mechanical systems acted upon by gyroscopic and positional forces characterized by a large 
parameter in the corresponding equations of motion is considered. Periodic solutions of such equations were 
investigated earlier in [l, 21. It is proved below that solutions of these equations exist, defined in an interval 
the length of which is a monotonically increasing unbounded function of the large parameter, and which 
transfer into the solutions of the corresponding degenerate systems as the large parameter approaches infinity. 
This timction can be specified in more detail if additional assumptions are made regarding the properties of 
the system and the nature of the forces acting on it. 

A similar problem was considered previously in [3] in the case when the forces depend periodically on 
time. The case of large potential forces was considered in [4] assuming that the degenerate system was 
stable in the first approximation. 

1. Consider a mechanical system with 1 degrees of freedom, characterized by the following kinetic 
energy 

and the generalized forces 

hQi(t, X) (i = l,..., ?t), Qi(t, X) (i = n + l,..., I) 

Here x = (xi, . . . , xl)= are generalized coordinates of the system, a dot above a symbol denotes 
differentiation with respect to time t, h is a positive large parameter, the symmetric matrix (Ug)$ = i is 
positive definite, and 0 < 2m > n 3 1. 

In the mechanical system considered, large positional forces act along the x1, . . . , n,,, coordinates 
and large gyroscopic forces act along the x1, . . . , x2, coordinates and are described by the terms with 
the coefficient h. 

Lagrange’s equations for the system can be written in the form 

(1-l) 
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Here 

Q”’ = (Q l,...,Q2,,,)T, Q'*' =(Q2,n+,,.-.vQn)'r 

F/ p Fj(f~&q,&~~~~) (j = L23 

F, ER*“‘, F2 ER”-2m, F3 ER’-” 

The matrices A4 = A&, q, &) are defined by the relation (A& = 1 = (CZ& = 1 and have dimensions 
OfAn - (2m x %),A 22 - ((n - 2m) x (n - %I)), ,433 - ((I - n) x (Z - n)), etc. We will assume that 
det G(e) f 0 and the matrix 3Q(*)/&l is positive definite for all values of the arguments. 

We will convert system (1.1) to a form that can be solved with respect to the leading derivatives. We 
will carry out the conversions in the form of three successive replacements of variables 

i-r, r-~+A3;1(A3,~+A32il) 

r1-9, q-r)+(A;z)-‘$6 

i-p, Pp = &+G-‘(Q(l) -A;2(A;,)71Q(2)) 

where Ah = Ag -A&&sj (i, j = 1,2), P = P(& q, 1;) is a non-degenerate 2m x 2m matrix satisfying 
the relations 

PT(A;, - A;2(A;2)-‘A;,)P = E2,,, 

P’GP--r-diag(y,J ,..., y,J), J= (1.2) 

Here and henceforth Ek is the unit k x k-matrix. (We will assume that P and ‘yi = a(&, q, 5) are fairly 
continuous functions for all acceptable 6, q and C.) Multiplying the system obtained on the left by 
PT and taking (1.2) into account we obtain the following equations 

fi=hTp+F,‘, 4 = +A;,)-IQ’*’ + F;, i = F; (1.3) 

which, together with the equations of the replacements of variables 

& Pp-G-‘(Q”‘+,(A;,)-IQ’*‘) 

(1.4) 

form a closed system equivalent to Eqs (1.1). 
Suppose the equation Q@)(f, 4, q, 5) = 0 has the solution q = q’(t, 5, &)- We will introduce the 

functions 
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~(t,~~~r,=r-A,-:(A,,~+A,,(q”-(A;,)-’A;,~)) 

0, =Fj(t.Qq(“),&O,qo,r) 
(A,i = A3i(&q(0)v5)* A;j = A;j(5,q’“‘v1;)) 
(i = 1,2, 3; j = 1, 2) 

When h = 00 Eqs (1.3) and (1.4) have solutions in which p = 0, q = q”, q = q”, while the variables 
5, &, r are defined by the system 

&a#, &q, i=q (1.5) 

The mechanical system considered performs a complex motion in which we can distinguish two 
types of rapid oscillations: mutational (with frequencies -h), due to the large gyroscopic forces, and 
oscillations with frequencies -h’” due to the large positional forces. The introduction of the quasi- 
velocities p, q and r using (1.4) enables us to distinguish these components in explicit form 
(“gyroscopic”, p and “positional”, q - q”). 

The degenerate system (1.5) describes the precessional motion with respect to the variables x1, . . . , 
xh due to the action of the forces hQi (i = 1, . . . , 2m), motion along the manifold q = q”, q = q” due 
to the action of the forces hQl (i = 2m + 1, . . . , n) with respect to the variables~~,~, . . . , x, and also 
motion, matched with them, with respect to the variables x,+~, . . . , q described by the last two 
equations of (1.5). 

We will prove that solutions of the equations of motion of the mechanical system considered exist, 
defined in the interval 0 < t < x(h), where x is a certain continuous non-negative monotonically increas- 
ing unbounded function, and, as h + += becomes the corresponding solutions of the degenerate system. 

Suppose #j = cpr(t), 5 = cp&), r = (p3(t) is a certain solution of system (1.5), defined when 0 G t < +=. 
We will put (P&), = II’@, cpl, (p2), cps(t) = qO(t, cpl, cp2, (p3). In view of the above assumptions a non- 
degenerate matrix S(t) exists such that 

We will assume that S(t) and e+(t) (i = 1, . . . , n - 2m) are fairly continuous functions and that the 
matrix I(cpr, (p4, cp2) is non-degenerate for alI 0 G t < +=. We Will put cpio = Qi(O) (i = 1, . . . ,5). 

Theorem 1. For any positive numbers Br, . . . , B, and 01 E (0, o,,(o) (06 = */6) positive constants 
Cl,... , c6 and H exist as well as a continuous monotonically increasing function x(h), unbounded as 
h + +oo, such that when h 2 H any solution of system (1.3) (1.4) p(t, h), q(t, h), r(t, h), &t, h), I& h), 
C(t, h) with initial conditions satisfying the inequalities 

Ilp(O,h)ll~ B,h-‘, Ilq(O,h)- Q;ll~ &h-’ 

Ilq(o,h)-Qt -Mh-‘11s B,h4a-2, II&(&h)-Q;lld &ha-’ 
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where M = Q-‘(0)(Fz(O, cpf, (~40, (p!, 0, & (~30) - &), is defined in the section 0 G t s x(ha) and satisfies 
the following limits in it 

Ilp(t,h)ll~ c+P-‘, Ilq(r,h)-cp,(r)ll=s C*P 

Ilr(t,h)-cp,(r)lls C~hZa-‘, Il&(t,h)-cp,(f)llS c‘Jta-’ 

IlTq(t,h)-cp,(t)lk cgIa-‘, ll5(t,h)-cp,(t)ll~ C,h2a-’ 

If there are no large positional forces in the mechanical system considered, then n = 2m, and the 
variables q and q do not occur in Eqs (l.l), while cpi(t) = const. In this case, the degenerate system 
describes rest with respect to the “gyroscopic” variables x1, . . . , xlm. It is then necessary to introduce 
the following changes into Theorem 1 

a, = &, B,h-’ -_) B,ha-*, &ha-’ + &ha-* 

B h2a-2 + &ha-*, 4 Beha-’ + B ha-* 4 

C3hZa-’ + C ha-’ 2 , C6h2a-’ + C4ha-’ 

If, moreover, I = n = 2m, then there will also be no variables r and J in system (1.1). All the variables 
are then “gyroscopic” and we can take the precessional equations as the degenerate system. Choosing 
2 = h-’ as the independent variable and carrying out transformations in (1.1) similar to those carried 
out above (similar transformations are carried out in [l]), we obtain equations of the form (1.3) and 
(1.4) with the replacement h + h*. It is then necessary to make the following changes in Theorem 1 

a0 = x, B, h-’ + B, h-* , B4hZa’-* + B2hae4, 

C,ha-’ + C,ha-I, C4ha-’ + C4ha-* 

2. To prove Theorem 1 we will consider the following system of ordinary differential equations 

ti = U(t,u,v), V=hVo(t,u,v)+V,(t,u,v) (2-l) 

Here the dot above a symbol denotes differentiation with respect to C, u E R”, v E R” (n 2 m); U, VO, 
VI are continuously differentiable vector functions of the corresponding dimensions, and h B 1 is a 
certain constant. 

Suppose the (m x (n +m))-matrix (ilV&q dV&u) h as a complete rank for all t, u and v. To fix our ideas 
we will assume that the matrices (dV&j) (i, j = m -p + 1, . . . , m) and (dVd(&j) (i = 1, . . . , m -p; j 
=n-m+p+l,...,n)(O<p G m) are non-degenerate for all t, u and v. We introduce the vectors 

x = (x;‘,...,x;)‘r, Xl = (u, 3.. .> u,_,+p 1”) x2 = (u,_,+,,+, 1.. . >u, 1” 

x3 = (v ,,..., v,_/J x4 =(v,_p+,7...&J 

and the corresponding vector functions Xs = (0, 0, Xp, gT)’ and X = (XT, . . . , XT)T and we rewrite 
system (2.1) in the form 

h = hX”(t, x) + X(t, x) (2.2) 

When h = 00 system (2.2) becomes the system 

X0(& x) = 0 

x’j=Xi(t,X) (i= 1,2) 

(2.3) 

(2.4) 
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We will call system (2.3), (2.4) a degenerate system. Suppose system (2.3) has an isolated solution 
x2 = x$, xl, x3), ~4 = G(t, xl, x3). Substituting these functions into the second equation of (2.3) we 
obtain the relation 

Xi -Xi(t,x,,x;,x3,x:) (i-1,2,3) 

We will assume that this equation (in x1) has an isolated solution x3 = xi@, x1). Substituting the 
functions xi, x30 and $ into the first equation of (2.4) we obtain 

XI ‘X,(~,X,&X1:& (2.5) 

Suppose x1 = cpr(t) is a certain solution of this system, defined for 0 G t < +=T We will put 

cp(r) = (cp:(t),...,cp;(r>)‘~ (P3w =x&P,) 

q*(t) = &oppcp,), (P40) = &w,7cp3) 

We make the replacement of variable x = cp(t) + o in (2.2) and we separate certain terms in explicit 
form in the equations obtained. The following system is obtained as a result 

<j = (hA(r) + B(t))o+f$“‘(t) + fp(r,o,h) (2.6) 

Here 

A(t) = (Ay(0)&,, Aij(f)=aX~(t,.)ldxj; B(t)=(Bii(t))zj_,, Bu(t)=dXi(t,~)laxj 

Go’ =(O,O,f$‘T,f$O)T)T, f(l) =(f(‘)T,v__,f~JT)T, f~~‘=Xj(t,~)-~j (j=3,4) 
0 01 

The following estimates hold for the functions 4;’ (j = 1, . . . ,4) as o, h-r + 0 

Ilf~~‘(t,o,h)ll= O(llwll*) (j = 1,2), llf~)‘(r,o,h)ll= O(hll6A*) (j = 3.4) 

We make the replacement of variable o + o + sh-‘, s = (ST, . . . , ~;f)~ in system (2.6). The vector 
components s2 and s4 are found as functions of s1 and s3 from the system As = h(O), while the 
components s1 and s3 are defined by the first two equations of the system s = Bs and the initial 
condition st(0) = 0 after substituting the expressions for s2 and s4 into them. (The conditions for these 
systems to be solvable are the same as for system (2.3) (2.4) with respect to the variables x1, . . . , xq.) 

As a result we obtain the following system 

&r = (M(t) + C(t))o+ fi’“‘(t,h-‘) + fi’“(r, o,h) (2.7) 

where 

c(r> = (Cij(r))tjslr Cii = Bti (i = 1,2; j = 1,...,4) 

Cii = Bv + af,$:)(r,s,h)l awj (i = 3,4; j = 1,...,4) 

The following estimates hold for the functions fi(‘) and f{‘) as 0, h-’ + 0 

Ilf:iO’(t,h-‘)II= O(K2), Ilfp(t,o,h)ll=O(h-‘lldl+lldl*) 

Ilf/~‘(t,h-‘)II= O(h-‘), Ilf{,!‘(t,o,h)ll= O(h-‘lldl+hlldl*) (i = 1, 2; j = 3, 4) 
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We make the replacement of variable o + w + qZz_‘, q = (0, 2, 0, qT)T in system (2.7). The vector 
components q2 and q4 are defined by the system 

Aq = (0 0 flyT, f,d”‘)‘. , , 

As a result we obtain 

cj-(hA(t)+D(t))o+f~“‘(t,h-‘)+f~“(t,w,h) 

(D(t) - C(t) + af:“(t,q,h)l aa> W-9 

The estimate for the function f$‘) as o, h-’ + 0 does not change, and for f$‘) it has the form 

Ilf’“‘(r h-‘)ll= o(h-2) 2 ’ 

By virtue of these estimates positive numbers 6 and ZZi exist as well as a function aO(t) such that for 
all t, o, 0, h satisfying the inequalities h 3 HI, the following relations are satisfied 

Ilf~“‘(r,h-‘)Ils @o(r)h-2, Ilf;“(t,o,h)lls ~o(t)(h-‘lloll+hllwl12) 

Ilf;“(r,o,h)-f;‘)(t,Z,h)ll~ O,(r)(h-‘Ho-~ll+h(lldl+IlGll)IIo-oil) 
(2.9) 

We will introduce the set Z = {(t, s, h): 0 =G s S t < +y h 3 HI}. 
We denote by W(r, s, h) the fundamental matrix of the non-uniform linear system corresponding to 

(2.8), defined in the set I. 

i?heon?m 2. Suppose the matrix-function w(t, s, h) satisfies the following relation for all (t, s, h) E Z 

II W(t, s, h) II 6 q(t) (2.10) 

where @i(r) is a certain continuous function. Then, for any positive numbers B and a E (0, %) (ac = Yz) 
positive constants C and H exist as well as a continuous non-negative monotonically increasing func- 
tion x(h), unbounded ash + +Q) such that when h 2 H the solution of system (2.8) o(t, h) with initial 
condition which satisfies the inequality 

II o(0, h) II d Bh-2 (2.11) 

is defined in the range 0 > t 2 x(ha) and satisfies the following limit in it 

II w(t, h) II s C/z"-2 (2.12) 

To prove Theorem 2 we construct a system of integral equations equivalent to the initial problem 
~(0, h) = m,, for system (2.8). The existence of a solution of the latter whichsatisfies conditions (2.11) 
and (2.12) in the range 0 3 c > x(ha) can be proved by the method of successive approximations. In 
this case x = Q2-l, where m2(t) is a monotonically increasing non-negative continuous function, 
unbounded as t + +w satisfying the inequality @2(t) 3 f@s(t)@i(t). 

We can formulate the following theorem on the basis of Theorem 2 and the replacement of variables 
made above. 

Theorem 3. Suppose that relation (2.10) is satisfied for a certain solution x = cp(t) of the degenerate 
system (2.3), (2.4). Th en, for any positive numbers B and (11 E (0, oc) (~GJ = Y2) positive constants C 
and H exist as well as a certain continuous non-negative monotonically increasing function x(h), 
unbounded as h + +m such that for h 3 H any solution of system (2.2) x(t, h) with initial condition 
satisfying the inequality 



Solutions of the equations of motion of gyroscopic systems 969 

II x(0, h) - q(O) - Qh-’ II Q Bh-2 (2.13) 

where Q = (0, Q2’, QT, QT>’ is a constant vector, determined using the right-hand side of (2.2) and the 
initial conditions ~(0) and @J(O), is defined in the interval 0 
the limit 11 x(0, h) - q(t) 11 d Cha-‘. 

6 t s x(ha) and, in this interval, satisfies 

We can change the scheme of conversions of system (2.6) somewhat in order to simplify the linear 
part of system (2.8). 

Since rank (~V&v) = p d m, we will assume that for all 0 c t < += a real non-degenerate 
continuously differentiable bounded (nz x m)-matrix function S(t) exists which satisfies the relation 
S’A’S = diag(O, A&), where A’ = (A& (i, j = 3,4). Then, the replacements of variables 

(Oj,Oi)T + S(O;,O;)T, o+ L(t,K’)cj+l(t,h-‘) 

where the matrix L and the vector I are defined using the right-hand side of (2.6) and satisfy the 
relations det L = 1 + O(h-‘), 11111 = 0(/z-‘), re d uces system (2.6) to a form similar to (2.8) with a 
linear part in the form of three independent subsystems (corresponding to “slow” and two types of 
“fast” motions). This simplifies the check of the condition (2.10) but leads to some change in 06 and 
the exponents in inequality (2.13). 

The equations of motion of gyroscopic systems are a special case of system (2.1). By virtue of the 
non-degeneracy of the kinetic-energy matrix, and also in view of the oscillating form of the fast 
motions for these systems, all the conditions of Theorems 2 and 3 are satisfied. The special form of the 
function V. in these systems enables us to equate some (or all) of the vector components Qi (i = 2,3, 
4) to zero (by changing ae and the exponents in inequality (2.13)). 

The corresponding assertions are proved in the same way as Theorem 3. 
To specify the form of the mechanical system and the nature of the forces acting on it in more detail 

the form of the function x can be refined. For example, for the equations of rotational motion of a 
satellite-gyrostat under the action of aerodynamic and gravitational moments in a circular orbit [5] we 
can take x(h) = Th@ (T = const > 0). 

I wish to thank V V Sazonov for useful discussions during this research. This research was carried 
out with partial financial support within the “University of Russia” programme. 
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